

El uso de la Tilapia en la alimentación humana, calidad alimentaria y sanitaria

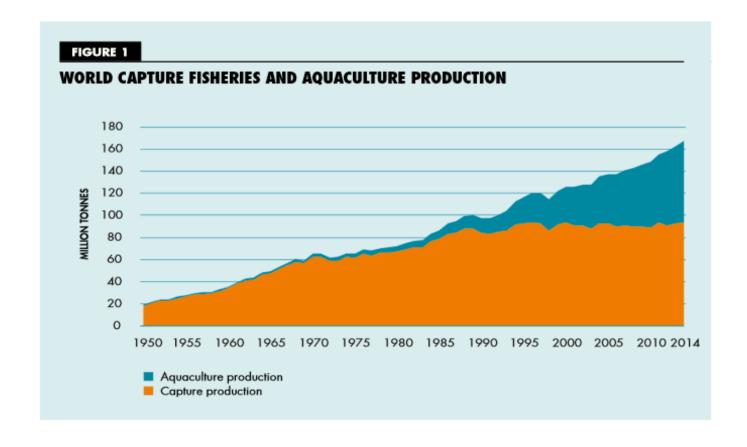
MARIA JESUS PERIAGO CASTÓN

NUTRICIÓN Y BROMATOLOGÍA

FACULTAD DE VETERINARIA, UNIVERSIDAD DE MURCIA

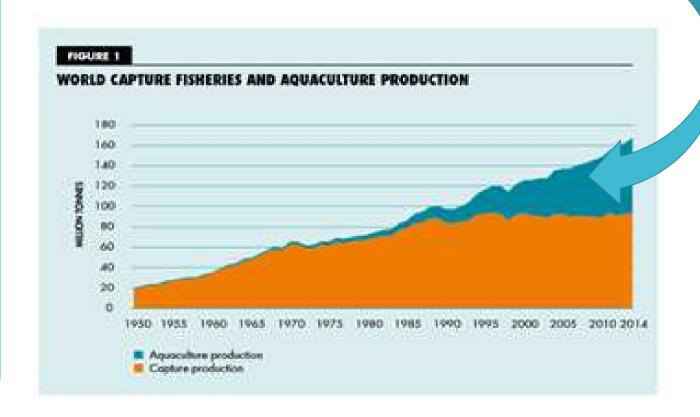
INDICE

- PRODUCCIÓN DE PRODUCTOS ACUÍCOLAS
- CONSUMO DE PESCADO A NIVEL MUNDIAL
- ACUAPONÍA COMO SISTEMA DE PRODUCCIÓN
- · PRODUCIÓN DE TILAPIA
- PARÁEMTROS DE CALIDAD DEL PESCADO
- COMPOSICIÓN QUIMICA DEL PESCADO
- TRAZABILIDAD Y SEGURIDAD DE LOS PRODUCTOS DE LA PESCA



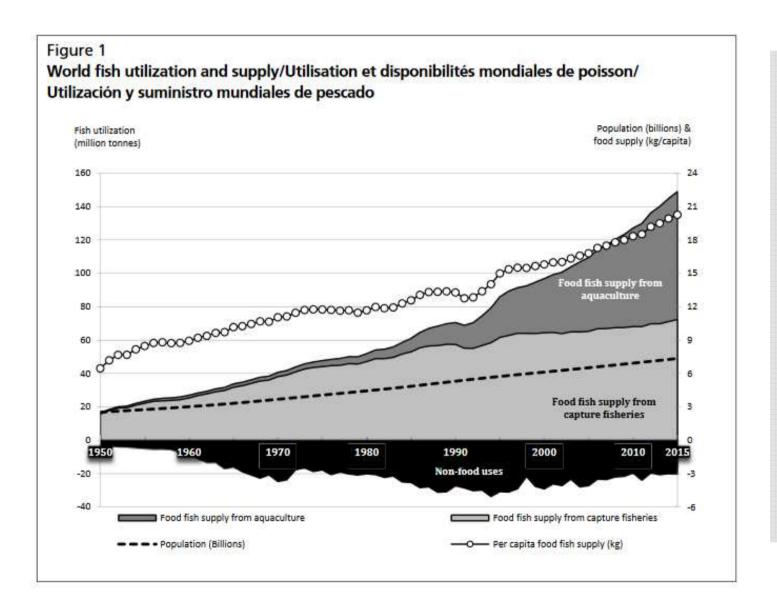
La gente nunca ha consumido tanto pescado o dependido tanto del sector pesquero para su bienestar como hoy en día.

- La producción mundial de pescado, crustáceos, moluscos y otros animales acuáticos alcanzó los **169,2 millones de toneladas** en 2015.
- 88% de la producción se destina a alimentación humana y la mayor forma de comercialización y consumo es en forma de pescado fresco



- La producción de capturas fue de 92,6 millones de toneladas, un incremento de 1,6 por ciento en comparación con el año anterior.
- La base de datos de las capturas mundiales de la FAO incluye estadísticas de más de 1.650 especies marinas capturadas, aunque 25 especies principales o géneros que representan por si solos casi el 42% del total de las capturas marinas. Más de la mitad de estas especies son peces pelágicos pequeños que presentan grandes fluctuaciones debido a los regímenes ambientales.

- La producción acuícola mundial en el 2015 consistió en:
- 51,9 millones de toneladas de peces (68 %)
- 16,4 millones de toneladas de moluscos (21 %)
- 7,4 millones de toneladas de crustáceos (10 %)
- 0,9 millones de toneladas de otras especies (1 %)

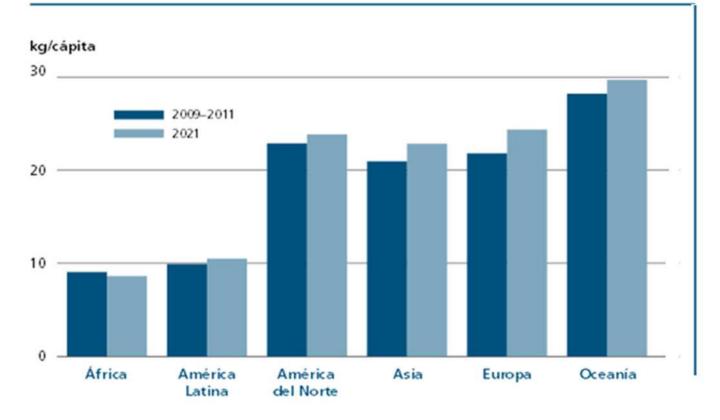


	FINE	ISH						
MAJOR PRODUCERS	INLAND AQUACULTURE	MARINE/ COASTAL AQUACULTURE	MOLLUSCS	CRUSTACEANS	OTHER AQUATIC ANIMALS	TOTAL AQUATIC ANIMALS	AQUATIC PLANTS	TOTAL AQUACULTURE PRODUCTION
	(Thousand tonnes)							
China	26 029.7	1 189.7	13 418.7	3 993.5	839.5	45 469.0	13 326.3	58 795.3
Indonesia	2 857.6	782.3	44.4	613.9	0.1	4 253.9	10 077.0	14 330.9
India	4 391.1	90.0	14.2	385.7		4 881.0	3.0	4 884.0
Viet Nam	2 478.5	208.5	198.9	506.2	4.9	3 397.1	14.3	3 411.4
Philippines	299.3	373.0	41.1	74.6		788.0	1 549.6	2 337.6
Bangladesh	1 733.1	93.7		130.2		1 956.9		1 956.9
Republic of Korea	17.2	83.4	359.3	4.5	15.9	480.4	1 087.0	1 567.4
Norway	0.1	1 330.4	2.0			1 332.5		1 332.5
Chile	68.7	899.4	246.4	***		1 214.5	12.8	1 227.4
Egypt	1 129.9			7.2		1 137.1		1 137.1
Japan	33.8	238.7	376.8	1.6	6.1	657.0	363.4	1 020.4
Myanmar	901.9	1.8		42.8	15.6	962.2	2.1	964.3
Thailand	401.0	19.6	209.6	300.4	4.1	934.8		934.8
Brazil	474.3		22.1	65.1	0.3	561.8	0.7	562.5
Malaysia	106.3	64.3	42.6	61.9	0.6	275.7	245.3	521.0
Democratic People's Republic of Korea	3.8	0.1	60.2		0.1	64.2	444.3	508.5
United States of America	178.3	21.2	160.5	65.9		425.9		425.9
Ecuador	28.2	0.0		340.0		368.2		368.2
Taiwan Province of China	117.3	97.8	99.0	21.9	3.6	339.6	1.0	340.6
Iran (Islamic Republic of)	297.5	0.1		22.5		320.2		320.2
Nigeria	313.2					313.2		313.2
Spain	15.5	44.0	222.5	0.2	0.0	282.2	0.0	282.2
Turkey	108.2	126.1			0.1	234.3		234.3
United Kingdom	13.5	167.3	23.8			204.6		204.6
France	43.5	6.0	154.5	0.0		204.0	0.3	204.3
TOP 25 SUBTOTAL	42 041.2	5 837.5	15 696.7	6 638.3	890.9	71 058.2	27 127.2	98 185.4
WORLD	43 559.3	6 302.6	16 113.2	6 915.1	893.6	73 783.7	27 307.0	101 090.7
PERCENTAGE OF TOP 25 IN WORLD TOTAL	96.5	92.6	97.4	96.0	99.7	96.3	99.3	97.1

PRODUCCIÓNY CONSUMO DE PESCADO

CONSUMO MUNDIAL DE PESCADO

- En 2013, el consumo mundial de pescado per capita se estimó en 19,8 kg, en donde el pescado representaba el 17 % del aporte de proteínas animales de la población mundial y el 6,7 % de todas las proteínas consumidas.
- A escala mundial, el pescado proporciona a cerca de 3.200 millones de personas casi el 20 % de su aporte medio de proteínas animales per capita y a 5.100 millones el 10 %.
- En el 2015 hubo un aumento en el consumo hasta 20,3 kg, con el porcentaje de la producción acuícola en el suministro total de alimentos pesqueros que sobrepasa él de la producción de capturas (10,4 kg vs 9,9 kg)



CONSUMO MUNDIAL DE PESCADO

Consumo de pescado per cápita

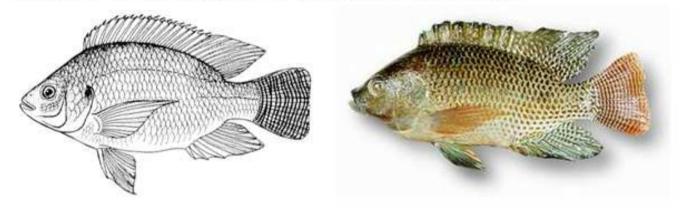
ACUAPONÍA

• BENEFICIOS Y DEBILIDADES DE LA PRODUCIÓN EN AQUAPONIA

- Es un sistema de producción intensive y sostenible (Bioeconomia)
- Se obtienen dos productos de producción primaria, uno de origen vegetal y otro animal
- · Es extremadamente eficiente en la utilización del agua
- No require el uso del suelo, se pueden utilizar en áreas poco productivas
- No precisa la utilización de sustancia químicas de síntesis, fertilizantes y pesticidas
- Buen rendimiento y pocas pérdidas
- · La producción es similar a una producción ecológica
- Alto nivel de bioseguridad
- Genera poco residuos
- Se puede construir de muchas maneras según el material disponible
- · Se puede poner en granjas familiares, formentando el trabajo familiar

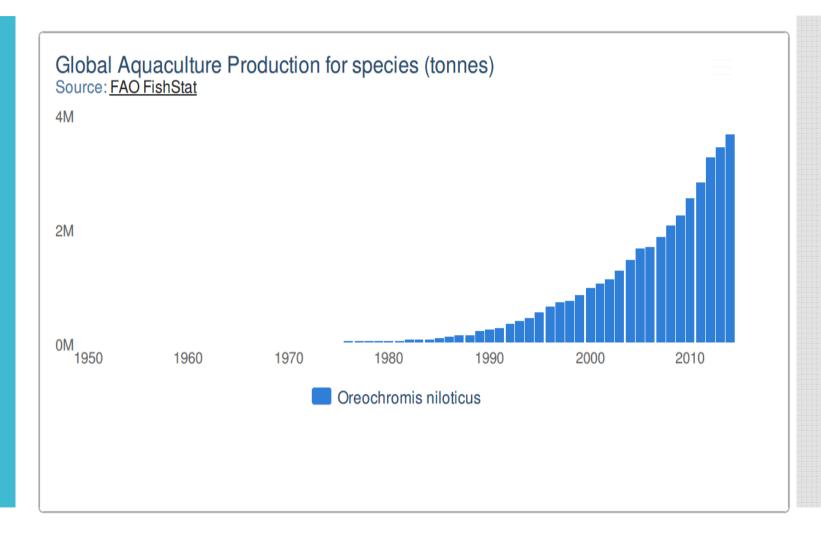
ACUAPONÍA

• BENEFICIOS Y DEBILIDADES DE LA PRODUCIÓN EN AQUAPONIA

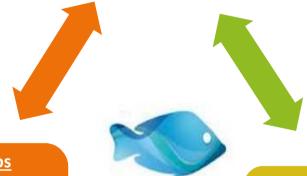

- Costes iniciale superiors a las sistemas tradicionales de producción
- Es necesario que los productores tengan un conocimiento del Sistema de producción
- No siempre hay un emparejamiento bueno entre la producción de vegetales y peces.
- No es recommendable en aquellos lugares en los que las plantas y los peces no coinciden en sus rangos de temperaturas óptimas.
- Menos alternativas para gestionar la producción que los sistemas aislados, por ejemplo no se pueden utilizar pestidicas para las plantas ni antibióticos para el pescado.
- Mayor demanda energética.
- Realizar un control diario.
- Errores o accidents pueden causar un colapso del sistema

IDENTIFICACIÓN

Oreochromis niloticus Linnaeus, 1758 [Cichlidae]


FAO Names: En - Nile tilapia, Fr - Tilapia du Nil, Es - Tilapia del Nilo

PRODUCCIÓN


PRODUCCIÓN

Main producer countries Main producer countries of Oreochromis niloticus (FAO Fishery Statistics, 2006)

CC. Organolépticas

- Escalas hedónicas
 - Método QIM

Parámetros químicos

- NBVT, N-TMA, Valor P,
- Valor K, hipoxantina,
 - Aminas biógenas
 - Amoniaco
- Compuestos de oxidación grasa

Parámetros físicos

- pH
- Propiedades dieléctricas

Inocuidad pescado

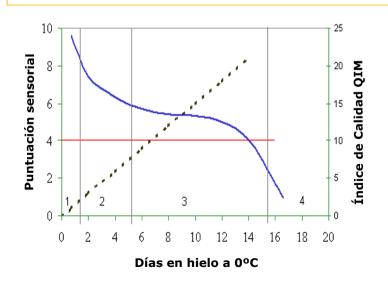
- Biológica
- Química
- Física

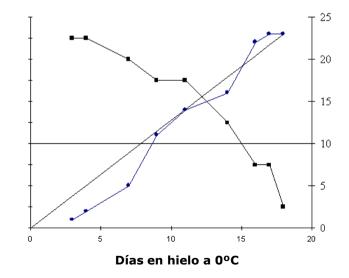
CALIDAD SENSORIAL

•Evaluación de la apariencia, olor, textura (y sabor) empleando los órganos de los sentidos

VENTAJAS

- •Se aproxima a la percepción del consumidor
- Rapidez
- Método no destructivo
- Percepción global del grado de frescura
- Flexible


INCONVENIENTES


- •Los jueces pueden fatigarse
- Distracción
- •Es necesario entrenamiento
- •Interpretaciones desiguales entre jueces
- •¿Subjetivo?

MÉTODO DEL ÍNDICE DE CALIDAD (QIM)

- •Utiliza puntuación de grados deméritos.
- •Cada característica sensorial que se modifica durante el almacenamiento se puntúa de 0 (máximo de frescura) a 3 (deteriorado).
- •La suma de todas las puntuaciones es el **Índice de Calidad**.
- •Ninguna muestra puede ser rechazada basándose en un único criterio
- •Los esquemas de trabajo son específicos de cada especie

CALIDAD SENSORIAL

PARÁMETROS DE CALIDAD DEL PESCADO

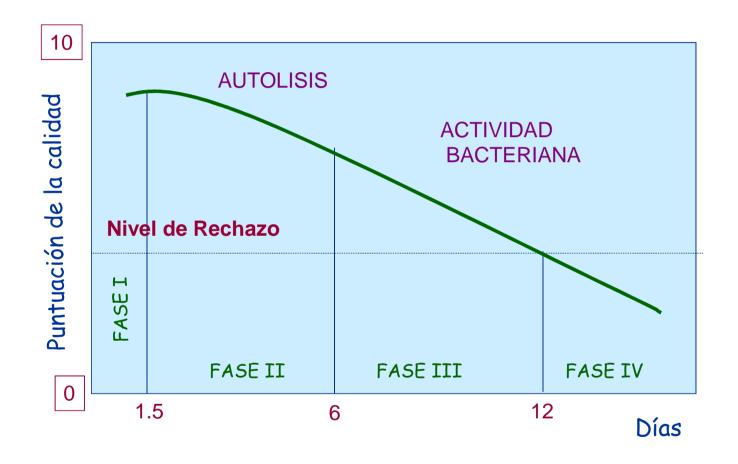
1. Apariencia

Piel, ojos, branquias, carne, color y óganos

2. Condición

Carne, columna vertebral y peritoneo

3. Olor


Branquias, piel y cavidad abdominal

Categorías comerciales Extra, A, B y no admitidos

PARÁMETROS FISICO-QUÍMICOS

PARÁMETROS FISICOQUÍMICOS

Parámetros químicos

- NBVT, N-TMA, Valor P,
- Valor K, hipoxantina,
 - Aminas biógenas
 - Amoniaco
- Compuestos de oxidación grasa

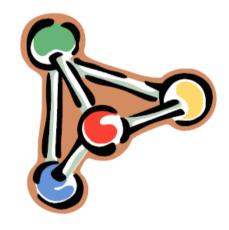
Parámetros físicos

- pH
- Propiedades dieléctricas

SEGURIDAD ALIMENTARIA

PARÁMETROS DE CALIDAD DEL PESCADO

- Biológicos: parasitos, virus y bacterias
- Químicos: contaminantes ambientales y productos medicamentosos
- **Físicos:** anzuelos y otros elementos extraños


Suponen un mayor problema en pescado procedente de pesca extractiva pero en productos de la acuicultura están controlados por los sistemas de producción

COMPOSICIÓN QUÍMICA

PESCADO

COMPOSICIÓN QUÍMICA

ESPECIE

EDAD

TALLA

PESO

SEXO

ALIMENTACIÓN

ESTILO DE VIDA

ESTACIÓN DEL AÑO

Tabla 4-4. Composición en macronutrientes de algunas especies de pescado^a

Especie	Energía (kcal)	Proteínas (g)	Grasas (g)
Atún enlatado en aceite	228	24,2	20,5
Bonito	138	23,5	4,2
Cabrilla	87	20,1	0,1
Cazón (filete)	106	24,5	0,2
Cherna	87	19,9	0,2
Corvina	100	20,8	1,2
Lisa	98	20,6	1,1
Mero	78	18	0,1
Mojarra	106	19,2	2,7
Pargo	109	21,1	2,1
Pescado seco tipo bacalao	374	81,8	2,8
Róbalo	94	20	1
Salmón enlatado	170	20,7	9
Sardina (en aceite)	310	20,6	24,4

^a Los resultados se expresan por 100 g de porción comestible. El contenido en hidratos de carbono es inferior al 0,5 %.

COMPOSICIÓN QUIMICA PROXIMAL

PARÁMETROS	Food dataBase FDA
% PROTEÍNA TOTAL	20-23
% HIDRATOS DE CARBONO	-
% GRASA	0,5-1,7
VALOR ENERGÉTICO KCAL/100 G	80-96

COMPOSICIÓN QUIMICA PROXIMAL

PARÁMETROS	
% HUMEDAD	76%
% CENIZAS	1,5%
% PROTEÍNA TOTAL	15%
% HIDRATOS DE CARBONO	1%
% GRASA	6%
VALOR ENERGÉTICO KCAL/100 G	119

PROTEÍNAS Y CALIDAD DE LA PROTEÍNA

COMPOSICIÓN QUÍMICA PESCADO

<u>Proteínas estructurales</u> (actina, miosina, tropomiosina y actomiosina), que constituyen el 70-80% del contenido total de proteínas (40% en mamíferos).

<u>Proteínas sarcoplasmáticas</u> (albúmina, globulina y enzimas), constituye el 25-30% del total de proteínas.

Proteínas del tejido conectivo (colágeno), que constituyen aproximadamente el 3% del total de las proteínas en teleósteos y cerca del 10% en elasmobranquios (17% en mamíferos).

PROTEÍNAS Y CALIDAD DE LA PROTEÍNA

El pescado y los productos pesqueros representan una valiosa fuente de proteínas de origen animal, ya que una porción de 150 g de pescado proporciona entre el 50 y 60 por ciento de las necesidades diarias de proteínas de un adulto.

Las proteínas del pescado contienen todos los **aminoácidos esenciales** tienen un valor biológico muy alto

Bajo contenido en hidroxiprolina

PROTEÍNAS Y CALIDAD DE LA PROTEÍNA

AMINOÁCIDOS ESENCIALES

Aminoácido	Pescado	Leche	Carne vacuna	Huevos
Lisina	8,8	8,1	9,3	6,8
Triptófano	1,0	1,6	1,1	1,9
Histidina	2,0	2,6	3,8	2,2
Fenilalanina	3,9	5,3	4,5	5,4
Leucina	8,4	10,2	8,2	8,4
Isoleucina	6,0	7,2	5,2	7,1
Treonina	4,6	4,4	4,2	5,5
Metionina-cisteína	4,0	4,3	2,9	3,3
Valina	6,0	7,6	5,0	8,1

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

Tabla 4-5. Especies de pescado según el contenido graso

Graso o azul	Semigraso	Magro o blanco
Anguila Atún Bonito del norte Boquerón Caballa Estornino Jurel Palometa negra o japuta Salmón Sardina	Dorada Lubina Pez espada Salmonete Trucha	Acedía Bacaladilla Besugo Gallo Lenguado Merluza Rape Rodaballo

6-25%

2.5-6%

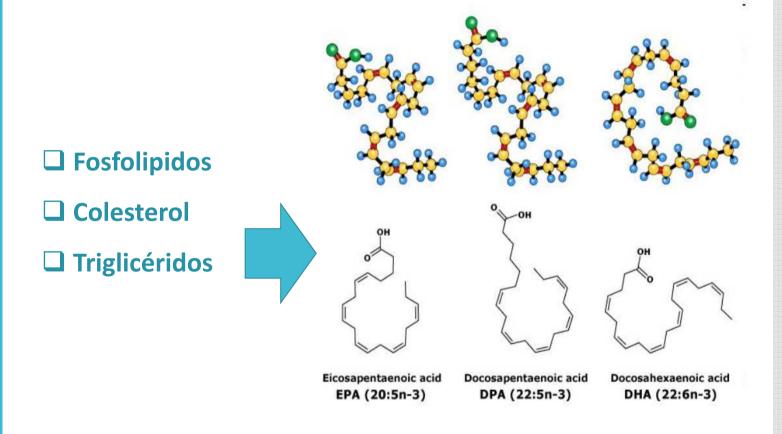
max 2.5%

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

COMPOSICIÓN QUÍMICA PESCADO

Hígado

Gónadas maduras



Grasa subcutánea y tejido muscular

PÉRFIL DE ÁCIDOS GRASOS

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

Tabla 4-6. Contenido de algunos lípidos (g/100 g de porción comestible) en pescados

Pescados	Lípidos totales	EPA	DHA	Total n-3
Bacalao	0,73	0,08	0,23	0,32
Esturión	7,2	1,4	0,57	2,56
Lenguado	0,45	0,07	0,12	0,22
Merluza	0,69	0,05	0,22	0,3
Salmón	8,3	0,25	0,73	1,28
Sardina	12	1,05	1,29	3,12

DHA: ácido docosahexaenoico, 22:6 n-3; EPA: ácido eicosapentaenoico, 20:5 n-3.

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

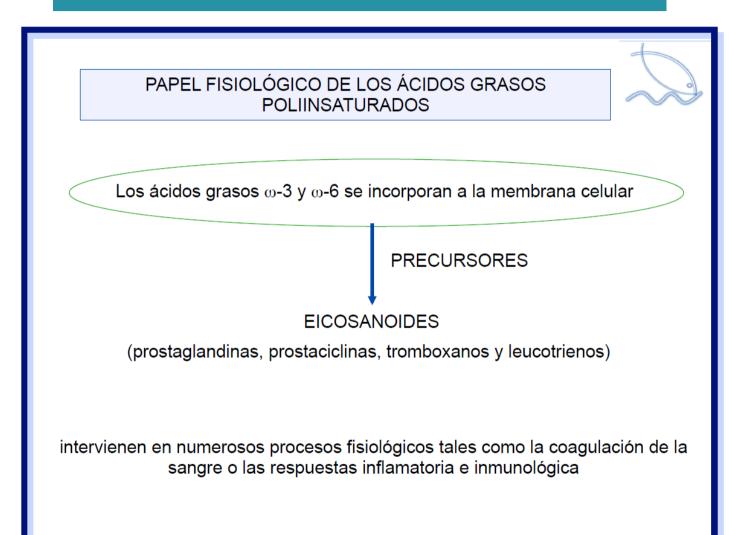
GRASA TOTAL	6,00%
Grasa monoinsaturada	3,2%
Grasa saturada	1,8%
Grasa poliinsaturada	1,1%

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

ACIDO GRASOS	%
Acido oleico C18:1 n-9	2,7
Acido linoleico C18:2 n-6	0,73
Acido linolénico C18:3 n-3	0,15
Acido eicosatrienoico C20:5 n-3	0,03
Acido eicosatrienoico C20:5 n-6	0,02
Acido eicosapentanoico C20:5 n-3	0,01
Acido docosapentanoico C22:5 n-3	0,03
Acido docosahexanoico C22:6 n3	0,09

TOTAL N-3

0,33 G/100 G


Ácidos Grasos %	SALVAJE	CULTIVADA
C 14:0 mirístico	4.33±0.31 ^a	5.05±0.20b
C 16:0 palmítico	20.58±0.93	19.65±3.6
Total saturados	25.6	25.5
C 16:1 palmitoleico	5.85±0.35	5.82±0.30
C 18:1 ω9 oleico	22.52±079 °	21.18±0.88 ^b
C 18:1 ω7	2.54±0.17 a	2.25±0.13 ^b
C 20:1 ω9 eicosanoico	3.89±1.11	3.86±0.19
C 22:1 ω9 erúcico	0.34±0.02 ^a	0.19±0.01 ^b
C 22:1 w11	2.73±1.1	2.62±0.5
C 24:1 ω9 nervónico	0.51 <u>±</u> 0.09 ^a	0.29±0.03b
Total monosaturados	38.4	36.2
C 18:2 ω6 linoleico	14.00±3.16 ^a	17.1 ±1.1 ^b
C 18:4 w3 estearidónico	1.33±0.18 ^a	2.01 <u>+</u> 0.13 ^b
C 20:5 ω3 eicosapentanoico EPA	6.99±0.41 ª	8.55±0.42 ^b
C 22:5 ω3 docosapentanoico	1.31 <u>+</u> 0.16	1.18±0.10
C 22:6 ω3 docosahexaenoico DHA	13.11±2.05 °	9.45±0.89 ^b
Total poliinsaturados	36.7	38.3

	SALVAJE	CULTIVADA	
w6	14.0	17.1	
w3	22.7	21.2	
w3/w6	1.6	1.2	

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

COMPOSICIÓN QUÍMICA PESCADO

EFECTOS CARDIOVASCULARES

- ✓ Efecto antiarrítmico (efecto regulador que estos ácidos grasos ejercen sobre las propiedades eléctricas del miocardio)
- ✓ Efecto antitrombótico, al disminuir la agregación plaquetaria (inhibición de tromboxano A₂)
- ✓ Efecto sobre el endotelio (modula el proceso de aterogénesis y potencia el efecto vasodilatador del óxido nítrico)
- √ Efecto hipotensor
- ✓ Efecto sobre el perfil lipídico (disminución de triglicéridos y colesterol VLDL, posible aumento de colesterol HDL)

GRASAY CALIDAD NUTRICIONAL DE LA GRASA

COMPOSICIÓN QUÍMICA PESCADO

PREVENCIÓN DE ENFERMEDADES

- ✓ DESÓRDENES NEUROLÓGICOS (Algunos trabajos científicos han descrito que las cantidades de AGPI ω-3 en las membranas de las células de individuos que padecen Alzheimer, depresión o esquizofrenia son muy bajas)
- ✓ DESARROLLO DEL CEREBRO, SISTEMA NERVIOSO Y RETINA
- ✓ PREVENCIÓN DE CANCER DE COLON, MAMA Y PRÓSTATA
- ✓ DISMINUCIÓN DE LA SINTOMATOLOGÍA EN PROCESOS INFLAMATORIOS.
- ✓ EFECTO BENEFICIOSO EN PACIENTES CON SINDROME METABÓLICO
- ✓ ATENUAN LA OSTEOPOROSIS (inhibición de osteoclastos)

CONTENIDO MINERAL

☐ Fuente particularmente valiosa de calcio y	fósforo
☐ Los peces de mar tienen un alto contenido	de yodo.

☐ Bajo contenido en sodio

Elemento	Valor promedio (mg/100g)	Rango (mg/100g)
Sodio	72	30 - 134
Potasio	278	19 - 502
Calcio	79	19 - 881
Magnesio	38	4,5 - 452
Fósforo	190	68 - 550

CONTENIDO MINERAL

Tabla 4-7. Contenido en yodo (µg/100 g de porción comestible) de pescados y mariscos

Especie	I (μg)	Especie	I (μg)
Bacalao	170	Arenque	39
Mejillones	130	Salmón	34
Camarones	130	Sardinas en conserva	9
Almejas y berberechos	120	Rodaballo	4
Ostras	58	Anguila	4
Lenguado	53	Trucha	4
Mero	52	Carpa	2
Atún	50		

CONTENIDO MINERAL

COMPOSICIÓN QUÍMICA PESCADO

Elemento	mg/100 g	%CDR (200 g)
Hierro	0,328	5%
Cobre	0,03	6%
Potasio	343	-
Magnesio	25,5	15%
Fósforo	352,8	100%
Zinc	0,5	10%
Calcio	153	40%
Sodio	44,2	-

CONTENIDO MINERAL

COMPOSICIÓN QUÍMICA PESCADO

CONTAMINANTES

Elemento	mg/Kg	LMR mg/Kg
Cadmio	<0,02	0,3
Plomo	<0,05	0,05
Mercurio	<0,1	0,5

TABLE 3
Classification of the content of LC-PUFAs (EPA + DHA) by total mercury content in various finfish and shellfish

			EPA + DHA co	ncentration	
		Less than 3 mg/g	Between 3 and 8 mg/g	Between 8 and 15 mg/g	Greater than 15 mg/g
	Less than 0.1 μg/g	Fish: butterfish; catfish; Atlantic cod; Pacific cod; Atlantic croaker; haddock; pike; European plaice; pollock; saithe; sole; tilapia	Fish: flatfish; John Dory; perch, ocean and mullet; sweetfish; wolf fish Shellfish: mussels; squid	Fish: redfish; Atlantic salmon, (wild); Pacific salmon, (wild); smelt Shellfish: crab, spider; swimcrab	Fish: anchovy; herring; mackerel; rainbow trout; Atlantic salmon, (farmed); sardines; sprat Fish liver: Atlantic
		Shellfish: clams; cockle; crawfish; cuttlefish;			cod, (liver); saithe (liver)
Mercury concentration		oysters; periwinkle; scallops; scampi; sea urchin; whelk			Shellfish: crab (brown meat)
	0.1-0.5 µg/g	Fish: anglerfish; catshark; dab; grenadier; grouper; gurnard; hake; ling; lingcod and scorpionfish; Nile perch; pout; skate/ray, snapper, porgy and sheepshead; tuna, yellowfin; tusk; whiting Shellfish: lobster;	Fish: bass, freshwater; carp; perch, freshwater; scorpion fish; tuna; tuna, albacore Shellfish: crab; lobster, Norway; lobsters, spiny	Fish: bass, saltwater; bluefish; goatfish; Atlantic halibut, (farmed); Greenland halibut; mackerel, horse; Spanish mackerel; seabass; seabream; Atlantic tilefish; tuna, skipjack	Fish: eel; mackerel, Pacific; sablefish
	0.5–1 μg/g	American lobster Fish: marlin; orange roughy; tuna, bigeye	Fish: mackerel, king; shark	Fish: alfonsino	Fish: Pacific tuna, bluefin
	Greater than 1 μg/g		Fish: swordfish		

Note: Cells shaded grey indicate fish species that might pose a net risk if consumed four times a week, the remaining species pose no risk if consumed four times a week.

VITAMINAS

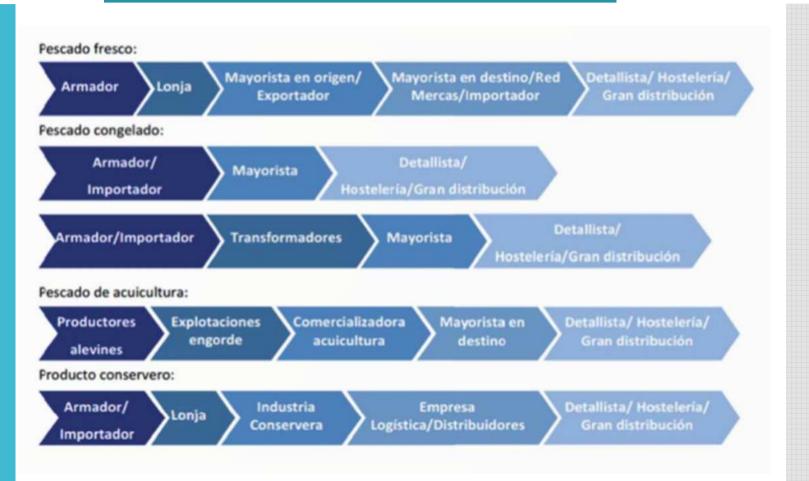
En general, la carne de pescado es una buena fuente de vitamina B y en el caso de las especies grasas, también de vitaminas A y D.

El contenido de vitaminas es comparable con el de los mamíferos excepto en el caso de las **vitaminas A y D**, que se encuentran en grandes cantidades en la carne de las especies grasas y en abundancia en el hígado de esas especies

Vitamina E en las especies de acuicultura

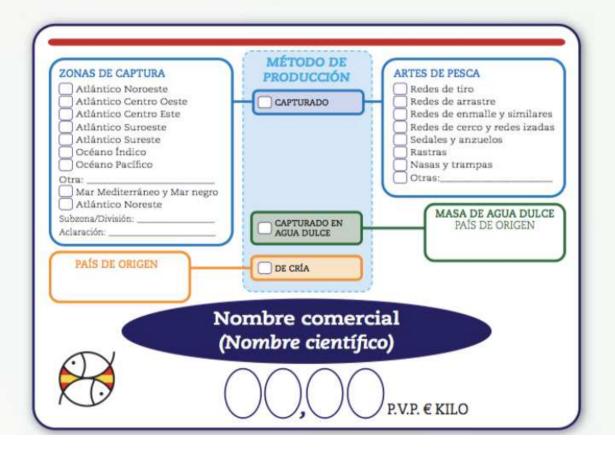
TRAZABILIDAD

TRAZABILIDAD Y SEGURIDAD ALIMENTARIA


La trazabilidad, en el caso de los productos pesqueros y acuícolas es la posibilidad de rastrear el pescado en todas las fases de la cadena comercial que van desde el buque o la piscifactoría a la mesa.

TRAZABILIDAD Y SEGURIDAD ALIMENTARIA

TRAZABILIDAD



TRAZABILIDAD

TRAZABILIDAD Y SEGURIDAD ALIMENTARIA

Modelo de etiqueta información alimentaria para productos pesqueros y acuícolas frescos que se presenten sin envasar o se envasen a petición del consumidor

#